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Instituto de Humanidades Ángel Ayala-CEU, Universidad Cardenal
Herrera-CEU, Alfara del Patriarca, Spain

Recent years have witnessed a sort of collective enthusiasm
around the emerging field of synthetic biology. This excite-
ment pervades not only respected scientific journals but also
political initiatives1 and magazines addressed to the general
public2. Many scientists, journalists, and administrators think
that “synthetic biology” is a recently coined term. But the deep
historical and epistemological roots of this new field are worth
considering.

Over 90 years ago, the French biophysicist Stéphane
Leduc (1912) used the term “synthetic biology” as the title of
a work devoted entirely to the synthesis of life from inanimate
materials. Interestingly enough, Leduc identified the synthesis
of organic molecules as the very first step in his research pro-
gram, recognizing that synthetic organic chemistry was already
a well-respected scientific field. But emphatically, maybe sor-
rowfully, he asked: “In what way is the synthesis of a cell
less admissible than the synthesis of a molecule?” (p. 14).
For Leduc, the development of biology as a full-fledged sci-
ence would require progress in the synthetic direction after
a descriptive and analytical age. He found, however, an “in-
conceivable and absurd hostility” among his contemporary
colleagues, the same attitude faced by other scientists in the
early 20th century, like Alfonso L. Herrera in Mexico, who
was convinced that a synthetic rather than an analytical ap-
proach would be the best way to answer the question of what
life is (Keller 2002). Immersed in their anti-vitalistic struggle,
they were perceived by other scientists as either excessively
far ahead of their time or completely mistaken. Actually, look-

ing at the impressive aspect of some of the synthetic life-like
structures (see the beautiful pictures in Eastes and Darrigan
2006), we can understand why they elicited such notable fas-
cination among the general public, as exemplified by Thomas
Mann’s passionate description of chemical gardens in Doktor
Faustus (Keller 2002; Lazcano 2006).

The physiologist Jacques Loeb, discoverer of artificial
parthenogenesis and one of the founders of modern biochem-
istry, pointed out in 1912 that “nothing indicates, however, at
present that the artificial production of living matter is beyond
the possibilities of science.. . . We must succeed in producing
living matter artificially, or we must find the reasons why this
is impossible” (pp. 5–6). In an earlier work, Loeb considered
artificial synthesis of life (artificial abiogenesis) as the “goal
of biology” and encouraged young scientists to bridge the gap
between nonliving and living matter (Loeb 1906: 223). Now, a
century after Loeb’s reflections on that paradigm shift reserved
only for the youngest minds of his time—a generation of sci-
entists has already disappeared without succeeding in such a
major endeavor—we could ask what synthetic biology really
means for contemporary scientists. Apart from the political
and media abuse of the term or classical computational artifi-
cial life, there are at least two main approaches to the synthesis
of living systems (Benner and Sismour 2005): the top-down
and the bottom-up strategies.

Top-Down Approach

A top-down strategy seeks the definition of the minimal
requirements for life in terms of, for instance, minimalist
genomes (Gil et al. 2004; Glass et al. 2006) or metabolic
networks (Gabaldón et al. 2007). The aim is to build an artifi-
cial cell integrating modular and standardized parts previously
isolated from real cells, in a chassis also derived from a living
cell. We also include in this group the experimental expan-
sions of the genetic alphabet or the code producing entirely
new artificial genetic systems (Benner and Sismour 2005).

This approach represents a natural extension of genetic
and metabolic engineering in the post-genomic era, the
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application of engineering thinking to biology through the
computational modeling of rewired gene circuit dynamics,
and the achievement of systems biology in practical terms
through the assembly of designed organisms from standard-
ized parts (Endy 2005). One example of this strategy is
the International Genetic Engineered Machine Competition
(iGEM) organized by the Massachusetts Institute of Tech-
nology, which reflects the confidence that only the youngest
will be brave enough to achieve that Promethean ambition
(http://parts.mit.edu/igem07/index.php/Main Page), an echo
of Loeb’s dream.

The announcement of Craig Venter’s intention to patent
the list of the minimal gene set has stirred hot debate (Anony-
mous 2007; Kaiser 2007). Venter’s group, led by Nobel laure-
ate Hamilton O. Smith, has experimentally determined that a
gene is essential by looking at the phenotypic effect of gene in-
activation in Mycoplasma genitalium. The result is a list of 381
protein-coding genes (one less than the gene set published by
Glass et al. 2006) that would represent the minimal genome for
a free-living bacterium grown in a rich culture medium. They
also have successfully assayed genome transplantation (Lar-
tigue et al. 2007). The imminent debate on intellectual property
and other social issues must include the ethical considerations
in a wider agenda based on “informed, truly democratic de-
bates within a secular framework, with sufficient transparency
in the criteria for controlling such type of research by inde-
pendent instances, and the proper guarantees that work in this
area will not be driven solely by economic criteria” (Lazcano
2006).

Bottom-Up Approach

The bottom-up approach relies on the conviction that funda-
mental concepts about life (i.e., autopoiesis, autonomy, and
self-replication) can be chemically implemented (Szostak et
al. 2001). Clearly, there is continuity here with the ultimate
aims of the research program of prebiotic chemistry as es-
tablished in 1953 by Stanley L. Miller and Harold C. Urey
under Aleksandr I. Oparin’s theoretical umbrella (Lazcano and
Bada 2003), since “the artificial building or synthesis of living
things is a very remote, but not an unattainable goal along this
road [leading to the ultimate knowledge of the nature of life]”
(Oparin 1938: 252).

On comparing these two approaches to constructing
life, we find that the first is like a pragmatist’s effort to
achieve useful goals (e.g., improvements in bioremediation
or biomedicine or new energy resources), whereas the second
seeks a more essential understanding of living phenomena and
their potential connections with the historical steps leading to
the chemical origins of life on Earth. In a more fundamental
way, the first approach searches for the design of objects with
well-defined and useful features in which mutation and evo-

lution should be minimized. However, in the second strategy,
at least for those of us who accept evolution as an essential
attribute of life (Peretó et al. 2005), evolutionary processes
must be implemented by the artificial construct, this becoming
a compulsory step.

At any rate, it seems to us that the best result of any
synthetic approach to living beings would be new theoretical
findings. As has happened in other sciences, the disentangle-
ment of some concepts is inaccessible to analysis and only
becomes feasible through synthesis, i.e., exploring the land-
scape of the possible. The best example is the discovery of
the constraints on the geometry of chemical reactions—the
Woodward-Hoffmann rules—partially derived from the ex-
perimental work of the organic chemist Robert Woodward on
B12 vitamin synthesis. The new insights into the reactivity of
organic reactions accompanying the discovery of these rules
enabled Albert Eschenmoser to redesign the complete corrin
ring synthesis in a simpler and more elegant way, which was
impossible to deduce from earlier chemical knowledge. Thus
the experimental work inspired the theoretical progress and
this conceptual achievement feed-forward stimulated a com-
pletely new experimental route for attacking the most intricate
part of the B12 molecule (Ball 2005).

More than ever, we are now faced with the real possibility
of producing an artificial cell under laboratory conditions. As
predicted by John B. S. Haldane many years ago (1940: 27),
this will occur before we fully understand the processes going
on inside cells, though our hope is that such an extraordi-
nary achievement will contribute to expanding our biological
knowledge in a fundamental way—or at least agitate the the-
oretical debate (Anonymous 2007). We certainly agree with
Szathmáry (2004) that “synthetic biology will no doubt deliver
technological benefits. But its main intellectual ‘deliverable’
will be to show that we have understood some basic biology,”
in complete harmony with the “goal of biology” anticipated
by Loeb a century ago.
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Notes
1. See, e.g. Synthetic Biology–Applying Engineering to Biology, NEST re-
ports, European Commission, http://www.cordis.lu/nest/publications.htm

2. The Economist, September 2–8, 2006; Newsweek International Edition,
June 4, 2007.
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