A Geometry of Biological and Cognitive Time

Giuseppe Longo

CNRS, Dépt. Informatique – ENS, et CREA, Polytechnique, Paris http://www.di.ens.fr/users/longo

Francis Bailly, Giuseppe Longo, Maël Montévil. *A 2-dimensional Geometry* for Biological Time, (Progress in Biophysics and Molecular Biology, to appear).

Giuseppe Longo, Maël Montévil. *Protention and retention in biological systems,* (submitted for publication).

Methodological (and logical) premises

Physical vs. Biological Theories in Bailly-Longo three (correlated) approaches:

Theoretical **extensions** (in the sense of Logic) of physical theories

Physical vs. Biological Theories

Ontological vs. Theoretical issue.

What about considering *extensions* of Physical Theories by *proper observables*?

- Extended criticality
- Levels of biological organization
- Various forms of irreversibility of time (+ a two dimensional time)

Reduction to the physical (sub-)theories? Why not ...

In Physics:

unification (Newton vs Galileo; Thermodynamics (limit); Relativity/QM ...)

Question: "conservative" extension (in the sense of Logic) ?

Physical vs. Biological Theories *in Bailly-Longo three (correlated) approaches:*

- 1 *extended* criticality (*a physical oxymore*), JBS, 16, 2, 2008.
- 2 organization (a new observable) as anti-entropy, JBS, 17, 1, 2009.

3 - extra (irreversible) time and two dimensional time (not linear time), ongoing, with M. Montévil (this lecture)

- Common point to the approaches in 1, 2 and 3:
 - **Strict** "Consistent" **extensions**, in the sense of Logic, compatible with current physical theories, *but not necessarely reducible*:
- 1: contract the extension of criticality (from interval to point);
- 2: "=" instead of "≤" in balance equations (anti-entropy goes to 0);
- 3: collapse the extra dimension (a time bifurcation).

Question: are they "conservative"?

CONSERVATIVE (?) EXTENSIONS

Examples from Logic: $T \subset T' = T$ +NewAxiom (T' *extends* T)

Formal Arithmetic (PA)

- PA + König's Lemma (any *infinite*, finitely branching tree has an infinite branch) is a *strict*, *conservative* extension: it proves more on infinite trees, but no more *arithmetic* statements.
- 2. **PA + Axiom of infinity = Set Theory** (Set)

is a *strict*, *non-conservative* extension of PA, since Gödel '31: an axiom of **infinity** allows to prove Consistency of PA (*Coher*).

Hilbert's wrong conjecture:

Set is conservative over PA (thus, PA $|-Coher\rangle$)

CONSERVATIVE (?) EXTENSIONS

In **Biology**:

- Preparata, del Giudice (1995-7): Water coherence domains (in phase oscillations of molecules of water) in cells: derivable from enclosure of water in *organisms* (10¹⁴ cells) and *Quantum ED*. *Strict, conservative extension*.
- 2. Biot Pasteur: asymmetry in chirality of (levo-)tartaric acid. *So far*, no *physical* explanation: *non-conservative extension* needed ?

CONSERVATIVE (?) EXTENSIONS

In **Biology**:

 Preparata, del Giudice (1995-2007): Water coherence domains (in phase oscillations of molecules of water) in cells: derivable from enclosure of water in *organisms* (10¹⁴ cells) and *Quantum ED*. *Strict, conservative extension*.

2. Biot - Pasteur: asymmetry in chirality of (levo-)tartaric acid.*So far*, no *physical* explanation: *non-conservative extension* needed ?

Our theoretical attempts: *strict, conservative* (?; add new observables):

- 1 *extended* criticality (*a physical oxymore*), JBS, 16, 2, 2008.
- 2 organization or complexity as anti-entropy, JBS, 17, 1, 2009.
- 3 extra (irreversible) time and two dimensional time (this talk)

Biological and cognitive extensions of physical time

One dimension, three forms of time

Different observables

(same dimension; e.g. in Physics, Energy, free vs. potential)

- 1. **thermodynamical** time (*physical* irreversibility)
- 2. time of the constitution of biological order(Evolution, embryogenesis: proper *biological* irreversibility)
- 3. **cognitive** time (retention *and* protention : *cognitive* irreversibility, by an asymmetry; Part I, here)

Part II: two dimensional time

More on the first form of time (thermodynamics) a debate: physics vs. biology

thermodynamical time (*physical* irreversibility): entropy as
 energy dispersal (*not necessarely* disorder, in *physics*)
 energy dispersal *implies* disorder in *biology*

More on the first form of time (thermodynamics) a debate: physics vs. biology

thermodynamical time (*physical* irreversibility): entropy as
 energy dispersal (*not necessarely* disorder, in *physics*)
 energy dispersal *implies* disorder in *biology*

"in physics, a lowered energy state is not necessarily disorder, because it simply results in the identical molecule with a lowered energy state. The fact that such a molecule might be biologically inactive may not concern the physicist, but it definitely does concern the biologist" (Hayflick , 2007)

More on the second form of time (biology)

2. time of the constitution of biological order

(Evolution, embryogenesis: proper *biological* irreversibility)

Mytosis, per se, *increases order*, yet:

- it is *never an identical reproduction* (at least non-identity of proteomes and membranes);
- it induces an unequal diffusion of energy.

Thus, biological reproduction, as morphogenesis, is *intrinsically joint to variability* and, *thus, it produces entropy also by lack of (perfect) symmetries.* By this, it induces *its proper irreversibility*, beyond (and in addition to) thermodynamics.
(cf. a computers' production: *reversibility* and *iteratability* ...) An ongoing project ...

Part I: retention and protention

or

"*memory*" and "*expectation*" in terms of **characteristic** time

Learning as "*memory*" (retention) and preparing action as "*expectation*" (protention)

Usually (and informally) analysed as conscious activities

Extend to *pre-conscious* activites

```
(e.g.: paramecium, [Mislin, 2004])
```

Retention and protention, *in humans*:

- e.g.: retention of a *note,* in music, or of the beginning of a word or a sentence;
 - protention as expected ending, towards meaning and *action*.

Compatible with, but beyond Husserl: pre-conscious

Brain: «un comparateur projectif»

[Berthoz-Petit, 2006]

Example of **protention** :

« the **anticipating** deplacement of neurons' receptif fields *before* saccades » p. 70

Protention as « a fundamental property of the organism equiped with a neural system » p. 78

Active *constitution* of **reality itself** as « an anticipatory constitution » p. 75

Husserl's analysis

(Phenomenology of intimate consciousness of time, 1893 - 1917)

Retention: consciousness of past events, as *linear* traces:

Protention: Intentionality (no mathematical representation)

Retention and Protention in terms of characteristic time

Towards "biological inertia"

A conceptual frame

VERY SIMPLE MATHEMATICS, BUT JUST MATHEMATICS

Premise: on the role of time in the structural coherence and stability of a living unity

I. Correlation Length and Characteristic Time

II. Biological Rhythms

Characteristic Times and Correlation Lengths

Large organisms: propagation within an organism

Speed: v_p

Correlation length: $L_p = v_p \tau$ (τ , characteristic time)

(e.g.: propagation from/by lungs-blood)

Small organisms: diffusion within an organism

 $L_d = (D\tau)^{1/2}$, with D diffusion coefficient

(e.g.: diffusion by trachea in insects)

Scaling of characteristic time: $\tau \approx W^{1/4}$ (empirical evidence) Thus: $L_p \approx W_f^{1/4}$ and $L_d \approx W_f^{1/8}$ (*W* is a mass)

Tools: exponential relaxation times

Relaxation functions f:

from Physics: "going back" to an equilibrium f_e at speed: df/dt $\approx |f - f_e|/\tau$.

Where τ is a characteristic time

Form: $f(t) \approx a_c exp(t_e-t)/\tau$

Aim of Part I:

define (mathematically) a "biological inertia".

Retention and (Virtual) Protention :

Retention and (Virtual) Protention :

$$R(t,t_0) = a_R exp(t_0-t)/\tau_R \qquad P(t,t_1) = ?$$

Retention *and* (Virtual) Protention : by *symmetry* (first try)

 $R(t,t_0) = a_R exp(t_0-t)/\tau_R \qquad P(t,t_1) = a_P exp(t-t_1)/\tau_P$

Retention / Protention definitions

Retention:

 $R_k(t,t_0)$ at instant $t \ge t_0$ of event e of nature k

Protention (to be split: *virtual* and protention *capacity*):

(virtual) $P_k(t,t_1)$ at *instant* $t \le t_1$ (it will be defined by symmetry) (capacity) $C_P(t,t_0,t_1)$ **depending on R**

Principles:

 $C_{P}(R_{k},t,t_{1}) = 0$, when $R_{k} = 0$ no protention without retention; $\partial P_{k}/\partial R_{k} \ge 0$ protention increases w.r.to retention

Retention / Protention: specifications by *relaxation functions*

Time interval $[t_0 \le t \le t_1]$

Retention:

 $\mathsf{R}(\mathsf{t},\mathsf{t}_0) = \mathbf{a}_{\mathsf{R}} \mathbf{exp}(\mathbf{t}_0 - \mathbf{t}) / \tau_{\mathsf{R}}$

(Virtual) Protention by symmetry : $P(t,t_1) = a_P exp(t-t_1)/\tau_P \quad (an \ adjusted \ symmetry \ w.r.t.$ $relaxation: \ sign(t) \ changes, \ decreasing \ |t - t_1|))$

No protention without retention: Protention (Capacity):

$$\begin{split} C_{P}(t,t_{0},t_{1}) &= R(t,t_{0})P(t,t_{1}) \quad (\text{thus linear in } R \text{ and } P) \\ &= a_{P}a_{R}exp[(t_{0}-t)/\tau_{R}]exp[(t-t_{1})/\tau_{P}] \end{split}$$

Protention Capacity C_P

From

```
C_{P}(t,t_{0},t_{1}) = a_{P}a_{R}exp[(t_{0}-t)/\tau_{R}] \{exp[(t-t_{1})/\tau_{P}]\}
```

compute:

 $C_{P} = \{a_{R}a_{P}exp[(t_{0}\tau_{P} - t_{1}\tau_{R})/\tau_{R}\tau_{P}]\}exp[t(\tau_{R} - \tau_{P})/\tau_{R}\tau_{P}]$ (just one factor with time *t* dependency)

Maths Plot: fig. 1

Biological Inertia

In

$$C_{P} = \{a_{R}a_{P}exp[(t_{0}\tau_{P} - t_{1}\tau_{R})/\tau_{R}\tau_{P}]\}exp[t(\tau_{R} - \tau_{P})/\tau_{R}\tau_{P}]$$

Extract the coefficient:

Inertia: $I(t_0,t_1) = a_R a_P \exp[(t_0 \tau_P - t_1 \tau_R)/\tau_R \tau_P]$

$I(t_0,t_1) \text{ "contributes" to protention (a coefficient):}$ $C_P = I(t_0,t_1) \exp[t(\tau_R - \tau_P) / \tau_R \tau_P]$

Biological meaning: *inertia as a coefficient of Protention, depending on Retention* (from Paramecium to ... Man).

An analysis: $I(t_0, t_1) = a_R a_P \exp[((t_0 \tau_P - t_1 \tau_R)/\tau_R \tau_P)]$

Assume
$$\tau_{R} = \tau_{P} = \tau_{c}$$
:
 $C_{P} = a_{P}a_{R}exp[t(\tau_{R} - \tau_{P})/\tau_{R}\tau_{P}]exp[(t_{0}\tau_{P} - t_{1}\tau_{R})/\tau_{R}\tau_{P}]$ }
 $= a_{R}a_{P}exp[(t_{0}-t_{1})/\tau_{c}] = I(t_{0},t_{1})$

Thus, $C_P = I(t_0, t_1)$ and C_P assumes its least value as a function of $(\tau_R - \tau_P) \ge 0$

Comment: when $\tau_R = \tau_P$, **Protention** and **Inertia** *coincide*,

as Inertia is the key component of Protention, which increases only depending on increasing $(\tau_R - \tau_P)$ (cognitive complexity)

Previous hints on biological inertia

Vaz, Varela, 1978: « the lymphoid system has an *inertia*, which resists attempts to induce sudden and profound deviations in the course of events ».

(a weak notion: sort of persisting structural stability)

Edelman, Tononi, 2000: « dynamic core » (continualy maintained activity, independently of stimuli)

Varela, 1997: «inertia as... bringing forth of an identity » (stronger: it concerns the entire organism, its individual variability, yet with continuity)

For us: Inertia is the coefficient of protention (capacity)

From the spatialisation of time *to* the *time continuity* of space

From the spatialisation of time *to* the time *continuity* of space

(Physical) space-time ?

Thesis: No continuous pre-given frame

We conceptually (mathematically) reconstruct a continuous frame *from*

the continuity of trajectories (borders...)

as actions (saccades, mouvement...)

As a result of "glueing" (le "recollement") of *retention* and *protention*

e.g.: a trajectory *is* continuous as we "glue toghether" the "memorized" part and the "expected continuation".

Part II: Rhythms of Life or a two dimensional time

Spatialisation of time in Physics

- Simple geometries:
- 1. Linear (absolute) time: the Cantor real line
- **2. Oriented** Line (thermodynamics): an arrow along Cantor's reals

Spatialisation of time in Physics

- Simple geometries:
- 1. Linear (absolute) time: the Cantor real line
- 2. Oriented Line (thermodynamics): an arrow along Cantor's reals

H. Weyl's phenomenological critique of "Cantorian" time [Das Kontinuum, 1918]: the extended present, no analytic treatment with "individual" points

Spatialisation of time in Physics

- Simple geometries:
- 1. Linear (absolute) time: the Cantor real line
- 2. Oriented Line (thermodynamics): an arrow along Cantor's reals

H. Weyl's phenomenological critique of "Cantorian" time [Das Kontinuum, 1918]: the extended present, no analytic treatment with "individual" points

• **Relativistic** time in Minkoski's space-time:

• Feynmann's "zig-zag" time:

Particle anti-particle creation

Biological Time and Rhythms

(an introduction)

Physics: central role of

- *Energy* (from Galileo's inertia to QP energy spectrum)
- *Invariants* (geodesics and conservation, as *invariants* of physical determination, w.r. to *transformations*, e.g. symmetries)
- *Major physical constants*: G, c, h.... (dimensional!)
- *Time: an "epiphenomenon"* of movement (Aristotle, Newton...)

Biology: Conceptual priority of

- Organisation
- *Time*, as observable (an "operator"?):
 - 1. External-physical rhythms
 - 2. Internal rhythms (derived from non-dimensional values: major *constant*; an orthogonal dimension w.r.to physical time)

Biological Rhythms

External-physical rhythms (Ext: periods or physical frequencies):
 dimensional: s, Hz... exp(iωt): daylight, seasons...)

- 2. Internal rhythms (Int: physiological functions):
 - non-dimensional: heart beats, respiration, metabolic rhythms... b ≈ 1.2x10⁹, r ≈ 0.8x10⁹ in mammals;
 - pure numbers: they produce time scales as a function of the mass, e.g. LifeTime ≈ W^{1/4}

Geometric scheme for two dimensional Biological Time

0. Thermodynamical oriented time t: the horizontal axis -----> t

Geometric scheme for two dimensional Biological Time

- 0. Thermodynamical oriented time t: the horizontal axis -----> t
- Compactified dimension R: the circle
 Internal rhythms (Int): physiological functions

Geometric scheme for two dimensional Biological Time

- 0. Thermodynamical oriented time t: the horizontal axis -----> t
- Compactified dimension R: the circle
 Internal rhythms (Int): physiological functions

Taking into account also External Rhythms (Bailly, Longo, Montevil, 2010)

1. Ext: Day/Night...

2. Int: heart beats, respiratory ... (+ the internal "trace" of Day/Night)

Some applications...

.

Ideas: enlarge at constant speed (and renormalize)

Cardiac Rhythm: two days

Sample s20011 from The Long-Term ST Database, [13]

Cardiac Rhythm: *day* vs. *night* (200 beats per circle)

Comparison (sudden cardiac death): (a) Healthy case,(b) Female aged 67 with sinus rhythm and intermittent pacing.

(c) Female, 72, with atrial fibrillation.

(d) Male, 43, with sinus rhythm.

Data from samples 51, 35 and 30, The Sudden Cardiac Death Holter Database, 2009 (200 beats).

Where internal rhythms come from?

• Central Rhythm Generators in the *Brain*

See the work by **Jean Champagnat** http://www.cnrs-gif.fr/iaf/ngi/index.html

Some references

http://www.di.ens.fr/users/longo or Google: Giuseppe Longo

- Bailly F., Longo G. Mathématiques et sciences de la nature. La singularité physique du vivant. *Hermann, Visions des Sciences, Paris, 2006 (English version:* Imperial Coll., World Sci., 2010)
- Longo G., Montévil M., *Protention and retention in biological systems*, (submitted for publication).
- Bailly F., Longo G., Montévil M. *A 2-dimensional Geometry for Biological Time*, ongoing work.
- Bailly F., Longo G., *Extended Critical Situations*, in **J. of Biological Systems**, Vol. 16, No. 2, 1-28, 2007.
- Bailly F., Longo G., *Biological Organization and Anti-Entropy*. in **J. of Biological Systems**, Vol. 17, n. 1, 2009.